Contoured glaciers as large as the ice sheet currently covering Great Britain and Greenland were common in the past. Some glaciers were several thousand feet thick and covered the highest mountains in the state. The weight of the ice sheet was so great that it actually caused the land surface to sink hundreds of feet. Rock debris frozen into the terraces adjacent to melting ice, or as outwash in valleys in front of the retreating ice, or as moraines that were deposited by the ice margin as it stood still, or as terminal moraines that formed near the ice margin when it was retreating, all contributed to the chaotic mixture of boulders and sediment of all sizes (till) that remained after the ice melted away. The resulting debris mantle now forms the foundation of much of the land surface in Maine.

Geological processes are by no means dormant today, however, as rivers continue to modify the land surface. Modern glaciers are capable of valley incision, slope retreat, and valley filling when climatic conditions are favorable. The last remnants of glacial ice probably were gone from Maine by 11,000 years ago, when an ice sheet spread southward over New England. During this time, the land surface was released from dirty ice without subsequent reworking. Ridges of ice-shove material, or kames, were constructed consisting of till or washed sediments (moraines) were constructed. Erosion and sedimentation by the ice sheet and post-glacial streams have re-worked these terrace deposits and a great variety of other glacial deposits into a chaotic mixture of glacial material that forms the foundation of much of the land surface in Maine.

Geological processes are by no means dormant today, however, as rivers continue to modify the land surface. Modern glaciers are capable of valley incision, slope retreat, and valley filling when climatic conditions are favorable. The last remnants of glacial ice probably were gone from Maine by 11,000 years ago, when an ice sheet spread southward over New England. During this time, the land surface was released from dirty ice without subsequent reworking. Ridges of ice-shove material, or kames, were constructed consisting of till or washed sediments (moraines) were constructed. Erosion and sedimentation by the ice sheet and post-glacial streams have re-worked these terrace deposits and a great variety of other glacial deposits into a chaotic mixture of glacial material that forms the foundation of much of the land surface in Maine.

Geological processes are by no means dormant today, however, as rivers continue to modify the land surface. Modern glaciers are capable of valley incision, slope retreat, and valley filling when climatic conditions are favorable. The last remnants of glacial ice probably were gone from Maine by 11,000 years ago, when an ice sheet spread southward over New England. During this time, the land surface was released from dirty ice without subsequent reworking. Ridges of ice-shove material, or kames, were constructed consisting of till or washed sediments (moraines) were constructed. Erosion and sedimentation by the ice sheet and post-glacial streams have re-worked these terrace deposits and a great variety of other glacial deposits into a chaotic mixture of glacial material that forms the foundation of much of the land surface in Maine.

Geological processes are by no means dormant today, however, as rivers continue to modify the land surface. Modern glaciers are capable of valley incision, slope retreat, and valley filling when climatic conditions are favorable. The last remnants of glacial ice probably were gone from Maine by 11,000 years ago, when an ice sheet spread southward over New England. During this time, the land surface was released from dirty ice without subsequent reworking. Ridges of ice-shove material, or kames, were constructed consisting of till or washed sediments (moraines) were constructed. Erosion and sedimentation by the ice sheet and post-glacial streams have re-worked these terrace deposits and a great variety of other glacial deposits into a chaotic mixture of glacial material that forms the foundation of much of the land surface in Maine.

Geological processes are by no means dormant today, however, as rivers continue to modify the land surface. Modern glaciers are capable of valley incision, slope retreat, and valley filling when climatic conditions are favorable. The last remnants of glacial ice probably were gone from Maine by 11,000 years ago, when an ice sheet spread southward over New England. During this time, the land surface was released from dirty ice without subsequent reworking. Ridges of ice-shove material, or kames, were constructed consisting of till or washed sediments (moraines) were constructed. Erosion and sedimentation by the ice sheet and post-glacial streams have re-worked these terrace deposits and a great variety of other glacial deposits into a chaotic mixture of glacial material that forms the foundation of much of the land surface in Maine.